Calculate Cullis heritabilities from SpATS objects
Value
A data frame. The data frame has the following components
trait
: Character string with the trait being analyzedH2Cullis
: Generalized heritability proposed by Cullis (2006)H2Oakey
: Generalized heritability proposed by Oakey (2006)reBLUP_avg
: Average BLUP reliabilityvdBLUP_avg
: Average pairwise prediction error variance of genotype effectsPEV_avg
: Average predictive error variance (PEV) of genotype effectsvar_G
: Genotypic Variance
References
Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation variety trials with correlated data. Journal of agricultural, biological, and environmental statistics, 11, 381-393.
Oakey, H., A. Verbyla, W. Pitchford, B. Cullis, and H. Kuchel (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113, 809 - 819.
Examples
# \donttest{
library(SpATS)
library(agriutilities)
data(wheatdata)
wheatdata$R <- as.factor(wheatdata$row)
wheatdata$C <- as.factor(wheatdata$col)
m1 <- SpATS(
response = "yield",
spatial = ~ PSANOVA(col, row, nseg = c(10, 20), nest.div = 2),
genotype = "geno",
genotype.as.random = TRUE,
fixed = ~ colcode + rowcode,
random = ~ R + C,
data = wheatdata,
control = list(tolerance = 1e-03, monitoring = 0)
)
h_cullis_spt(m1)
#> trait H2Cullis H2Oakey reBLUP_avg vdBLUP_avg PEV_avg var_G
#> 1 yield 0.7726571 0.77 0.765436 1192.74 615.3125 2623.218
# }