The results of the check_design_met()
function are used in
single_trial_analysis()
to fit single trial models. This function can
fit, Completely Randomized Designs (CRD), Randomized Complete Block Designs
(RCBD), Resolvable Incomplete Block Designs (res-IBD), Non-Resolvable
Row-Column Designs (Row-Col) and Resolvable Row-Column Designs (res-Row-Col).
Returns an object of class smaAgri
, with a list of trial summary,
BLUEs, BLUPs, heritability, variance components, potential extreme
observations, residuals,
the models fitted and the data used.
This function will generate the required output to be used in the two-stage
analysis.
Usage
single_trial_analysis(
results = NULL,
progress = TRUE,
engine = "asreml",
remove_outliers = TRUE
)
Arguments
- results
Object of class
checkAgri
resulting of executingcheck_design_met()
function.- progress
Should the progress of the modeling be printed. If
TRUE
, for every trial a line is output indicating the traits fitted for the particular trial.- engine
A character string specifying the name of the mixed modeling engine to use, either
lme4
orasreml
. For spatial designs,SpATS
is always used, for other designsasreml
as a default.- remove_outliers
Should outliers be removed?
TRUE
by default.
Value
An object of class smaAgri
, with a list of:
- fitted_models
A list containing the fitted models. (Both models, the one with Genotype as Random and the one with Genotype as Fixed)
- resum_fitted_model
A data.frame containing a summary of the fitted models.
- outliers
A data.frame containing extreme observations. If
remove_outliers
isTRUE
, this data.frame will contain the observations removed.- blues_blups
A data.frame containing BLUPs/BLUEs for all the genotypes in each trial.
- std_residuals
A data.frame containing the standardized residuals for the model with genotype as random component.
- data
A data.frame containing the data used. If
remove_outliers
isTRUE
, data will have missing values for the outliers detected.
Examples
# \donttest{
library(agridat)
library(agriutilities)
data(besag.met)
dat <- besag.met
results <- check_design_met(
data = dat,
genotype = "gen",
trial = "county",
traits = c("yield"),
rep = "rep",
block = "block",
col = "col",
row = "row"
)
out <- single_trial_analysis(results, progress = FALSE)
print(out)
#> ---------------------------------------------------------------------
#> Summary Fitted Models:
#> ---------------------------------------------------------------------
#> trait trial heritability CV VarGen VarErr design
#> <char> <char> <num> <num> <num> <num> <char>
#> 1: yield C1 0.73 6.022489 87.39848 82.86095 row_col
#> 2: yield C2 0.37 17.104998 25.80684 108.68546 row_col
#> 3: yield C3 0.64 12.357202 83.57907 118.55567 row_col
#> 4: yield C4 0.41 8.179408 35.75568 136.21218 row_col
#> 5: yield C5 0.80 7.037586 103.79822 66.97523 row_col
#> 6: yield C6 0.49 16.632367 71.92232 207.53073 row_col
#>
#> ---------------------------------------------------------------------
#> Outliers Removed:
#> ---------------------------------------------------------------------
#> trait trial genotype id outlier
#> <char> <fctr> <fctr> <int> <lgcl>
#> 1: yield C1 G60 50 TRUE
#>
#> ---------------------------------------------------------------------
#> First Predicted Values and Standard Errors (BLUEs/BLUPs):
#> ---------------------------------------------------------------------
#> trait genotype trial BLUEs seBLUEs BLUPs seBLUPs wt
#> <char> <fctr> <fctr> <num> <num> <num> <num> <num>
#> 1: yield G01 C1 141.4161 6.078858 143.5308 5.249771 0.02706176
#> 2: yield G02 C1 157.8110 5.979708 155.8037 5.194547 0.02796663
#> 3: yield G03 C1 127.3836 6.091534 133.0256 5.269999 0.02694925
#> 4: yield G04 C1 154.8445 6.093866 153.8364 5.270427 0.02692863
#> 5: yield G05 C1 163.8950 6.132141 161.1831 5.271809 0.02659352
#> 6: yield G06 C1 128.5168 6.087902 133.6857 5.247130 0.02698141
#>
# }