Extract confidence intervals for the estimated parameters of an
object of class modeler
.
Usage
# S3 method for class 'modeler'
confint(x, parm = NULL, level = 0.95, id = NULL, ...)
Arguments
- x
An object of class
modeler
, typically the result of calling themodeler()
function.- parm
A character vector specifying which parameters should have confidence intervals calculated. If
NULL
, confidence intervals for all parameters are returned. Default isNULL
.- level
A numeric value indicating the confidence level for the intervals. Default is 0.95, corresponding to a 95% confidence interval.
- id
An optional unique identifier to filter by a specific group. Default is
NULL
.- ...
Additional parameters for future functionality.
Examples
library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_linear_sat",
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 35, 45)
)
print(mod_1)
#>
#> Call:
#> Canopy ~ fn_linear_sat(DAP, t1, t2, k)
#>
#> Sum of Squares Error:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.002601 0.459153 0.915706 0.938466 1.406399 1.897092
#>
#> Optimization Results `head()`:
#> uid t1 t2 k sse
#> 15 38.4 70.1 99.7 0.9157
#> 35 47.2 68.7 100.0 1.8971
#> 45 38.3 64.7 100.0 0.0026
#>
#> Metrics:
#> Groups Timing Convergence Iterations
#> 3 1.3798 secs 100% 355 (id)
#>
confint(mod_1)
#> # A tibble: 9 × 6
#> uid coefficient solution std.error ci_lower ci_upper
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 15 t1 38.4 0.176 37.9 38.8
#> 2 15 t2 70.1 0.316 69.3 70.9
#> 3 15 k 99.7 0.247 99.0 100.
#> 4 35 t1 47.2 NaN NaN NaN
#> 5 35 t2 68.7 NaN NaN NaN
#> 6 35 k 100. 0.356 99.1 101.
#> 7 45 t1 38.3 0.00780 38.2 38.3
#> 8 45 t2 64.7 0.0110 64.6 64.7
#> 9 45 k 100. 0.0132 100. 100.