Skip to contents

Modeling plant emergence and canopy growth using UAV data

This vignette demonstrates piecewise regression using canopy data derived from UAV imagery to estimate two key parameters:

  • t1: days to plant emergence.
  • t2: days to reach maximum canopy.

The data are from the University of Wisconsin-Madison potato breeding program, specifically for a partially replicated experiment. The UAV images were collected in 2020 and processed in 2024.

1. Exploring data

We begin with the explorer function, which provides basic statistical summaries and descriptive statistics, as well as visualizations to help understand the temporal evolution of each plot.

data(dt_potato)
explorer <- explorer(dt_potato, x = DAP, y = Canopy, id = Plot)
names(explorer)
#> [1] "summ_vars"      "summ_metadata"  "locals_min_max" "dt_long"       
#> [5] "metadata"       "x_var"
p1 <- plot(explorer, type = "evolution", return_gg = TRUE, add_avg = TRUE)
p2 <- plot(explorer, type = "x_by_var", return_gg = TRUE)
ggarrange(p1, p2)

plot corr

To see more about the type of plots visit plot.explorer().

var x Min Mean Median Max SD CV n miss miss% neg%
Canopy 0 0.00 0.00 0.00 0.00 0.00 NaN 196 0 0 0
Canopy 29 0.00 0.00 0.00 0.00 0.00 NaN 196 0 0 0
Canopy 36 0.00 2.95 1.84 15.09 3.22 1.09 196 0 0 0
Canopy 42 0.76 23.38 22.91 46.23 9.31 0.40 196 0 0 0
Canopy 56 32.51 75.20 74.96 98.62 12.26 0.16 196 0 0 0
Canopy 76 89.06 99.72 100.00 100.00 1.04 0.01 196 0 0 0
Canopy 92 89.06 99.75 100.00 100.04 1.02 0.01 196 0 0 0
Canopy 100 89.06 99.75 100.00 100.04 1.02 0.01 196 0 0 0

2. Regression Function

Once the data have been explored, we define the expectation function. In this case, it is a piece-wise regression function with three parameters: t1, t2, and k. The function can be expressed mathematically as follows:

fn_linear_sat()

\[\begin{equation} f(t; t_1, t_2, k) = \begin{cases} 0 & \text{if } t < t_1 \\ \dfrac{k}{t_2 - t_1} \cdot (t - t_1) & \text{if } t_1 \leq t \leq t_2 \\ k & \text{if } t > t_2 \end{cases} \end{equation}\]

plot fn

3. Fitting Models

To fit the model, we use the modeler function. Here:

  • x specifies the days after planting (DAP),
  • y is the canopy variable to be modeled,
  • grp allows us to perform group analysis, e.g., on multiple plots.

In this example, we have 196 plots but will only fit the model for plots 166 and 40 as a subset. We define the piecewise function fn_linear_sat and set initial values for the parameters.

mod_1 <- dt_potato |>
  modeler(
    x = DAP,
    y = Canopy,
    grp = Plot,
    fn = "fn_linear_sat",
    parameters = c(t1 = 45, t2 = 80, k = 0.9),
    subset = c(166, 40)
  )
mod_1
#> 
#> Call:
#> Canopy ~ fn_linear_sat(DAP, t1, t2, k) 
#> 
#> Sum of Squares Error:
#>     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
#>  0.05448 10.26923 20.48397 20.48397 30.69871 40.91346 
#> 
#> Optimization Results `head()`:
#>  uid   t1   t2   k     sse
#>   40 34.8 60.6 100  0.0545
#>  166 31.6 57.5 100 40.9135
#> 
#> Metrics:
#>  Groups     Timing Convergence Iterations
#>       2 0.914 secs        100% 558.5 (id)

After fitting, we can inspect the model summary and visualize the fit using the plot function:

plot(mod_1, id = c(166, 40))

plot fit

kable(mod_1$param)
uid t1 t2 k sse
40 34.84916 60.59505 100.0000 0.0544833
166 31.61374 57.54603 100.0047 40.9134555

3.1. Extracting model coefficients and uncertainty measures

Once the model is fitted, we can extract key statistical information, such as coefficients, standard errors, confidence intervals, and the variance-covariance matrix for each group (plot). These metrics allow us to draw conclusions about the parameter estimates and assess the uncertainty around them.

The functions coef, confint, and vcov are used as follows:

  • coef: Extracts the estimated coefficients for each group.
  • confint: Provides the confidence intervals for the parameter estimates.
  • vcov: Returns the variance-covariance matrix, which can be used to understand the relationships between the estimates and their variability.
coef(mod_1)
#> # A tibble: 6 × 6
#>     uid coefficient solution std.error `t value` `Pr(>|t|)`
#>   <dbl> <chr>          <dbl>     <dbl>     <dbl>      <dbl>
#> 1    40 t1              34.8    0.0240    1453.    2.93e-15
#> 2    40 t2              60.6    0.0368    1648.    1.56e-15
#> 3    40 k              100.     0.0603    1659.    1.51e-15
#> 4   166 t1              31.6    0.794       39.8   1.89e- 7
#> 5   166 t2              57.5    0.902       63.8   1.79e- 8
#> 6   166 k              100.     1.65        60.6   2.32e- 8
confint(mod_1)
#> # A tibble: 6 × 6
#>     uid coefficient solution std.error ci_lower ci_upper
#>   <dbl> <chr>          <dbl>     <dbl>    <dbl>    <dbl>
#> 1    40 t1              34.8    0.0240     34.8     34.9
#> 2    40 t2              60.6    0.0368     60.5     60.7
#> 3    40 k              100.     0.0603     99.8    100. 
#> 4   166 t1              31.6    0.794      29.6     33.7
#> 5   166 t2              57.5    0.902      55.2     59.9
#> 6   166 k              100.     1.65       95.8    104.
vcov(mod_1)
#> $`40`
#>               t1            t2            k
#> t1  5.755016e-04 -0.0002977975 4.429736e-08
#> t2 -2.977975e-04  0.0013525945 9.350853e-04
#> k   4.429736e-08  0.0009350853 3.632249e-03
#> 
#> $`166`
#>             t1         t2           k
#> t1  0.63072149 -0.2613850 -0.00283193
#> t2 -0.26138501  0.8131631  0.71197685
#> k  -0.00283193  0.7119768  2.72567110

4. Providing different initial values

The initial fit may not always be optimal, so we can adjust the initial parameter values for each plot and even fix certain parameters to improve the model.

initials <- data.frame(
  uid = c(166, 40),
  t1 = c(70, 60),
  t2 = c(40, 80),
  k = c(100, 100)
)
kable(initials)
uid t1 t2 k
166 70 40 100
40 60 80 100
mod_2 <- dt_potato |>
  modeler(
    x = DAP,
    y = Canopy,
    grp = Plot,
    fn = "fn_linear_sat",
    parameters = initials,
    subset = c(166, 40)
  )
plot(mod_2, id = c(166, 40))

plot fit 2

kable(mod_2$param)
uid t1 t2 k sse
40 34.84916 60.59505 100.0000 5.448330e-02
166 70.75697 39.85048 100.0047 1.077531e+04

It’s important to note that providing poor initial guesses for the parameters can lead to inaccurate or unreliable model fits. For example, if we mistakenly assign t1 (the day of plant emergence) a value greater than t2 (the day of maximum canopy), the model fit can fail or produce nonsensical results.

5. Fixing some parameters of the model

In certain cases, we may want to fix specific parameters either because they are known or because we prefer the model to leave these parameters unchanged. For example, we can fix the parameter k, which represents the maximum canopy value, as follows:

fixed_params <- list(k = "max(y)")
mod_3 <- dt_potato |>
  modeler(
    x = DAP,
    y = Canopy,
    grp = Plot,
    fn = "fn_linear_sat",
    parameters = c(t1 = 45, t2 = 80, k = 0.9),
    fixed_params = fixed_params,
    subset = c(166, 40)
  )
plot(mod_3, id = c(166, 40))

plot fit 3

kable(mod_3$param)
uid t1 t2 sse k
40 34.84916 60.59505 0.0544833 100.000
166 31.61374 57.54663 40.9134718 100.007

By fixing k to 100, we are telling the model that the maximum canopy for these plots is fixed at 100%. This allows the model to focus on estimating the other parameters, t1 and t2, potentially improving the accuracy of their estimates by reducing the complexity of the model.

6. Comparing estimations

rbind.data.frame(
  mutate(mod_1$param, model = "1", .before = uid),
  mutate(mod_2$param, model = "2", .before = uid),
  mutate(mod_3$param, model = "3", .before = uid)
) |>
  filter(uid %in% 166) |>
  kable()
model uid t1 t2 k sse
1 166 31.61374 57.54603 100.0047 40.91346
2 166 70.75697 39.85048 100.0047 10775.31306
3 166 31.61374 57.54663 100.0070 40.91347

After fitting multiple models with different initial values, fixed parameters, and canopy adjustments, we can compare the resulting coefficients and sum of square errors (sse) to evaluate the impact of these changes.

rbind.data.frame(
  mutate(AIC(mod_1), model = "1", .before = uid),
  mutate(AIC(mod_2), model = "2", .before = uid),
  mutate(AIC(mod_3), model = "3", .before = uid)
) |>
  filter(uid %in% 166) |>
  kable()
model uid logLik df nobs p AIC
1 166 -17.87958 4 8 3 43.75916
2 166 -40.17379 4 8 3 88.34759
3 166 -17.87958 3 8 2 41.75916

7. Making predictions

Once the model is fitted and validated as the best representation of our data, we can proceed to make predictions. The predict.modeler() function provides a range of flexible prediction options, allowing users to perform point predictions, calculate the area under the curve (AUC), compute first or second derivatives, and even evaluate custom functions of the parameters. Below are some examples demonstrating these capabilities:

# Point Prediction
predict(mod_1, x = 45, type = "point", id = 166) |> kable()
uid x_new predicted.value std.error
166 45 51.62246 1.656734
# AUC Prediction
predict(mod_1, x = c(0, 108), type = "auc", id = 166) |> kable()
uid x_min x_max predicted.value std.error
166 0 108 6342.308 93.61781
# Function of the parameters
predict(mod_1, formula = ~ t2 - t1, id = 166) |> kable()
uid formula predicted.value std.error
166 t2 - t1 25.93229 1.402375

In each example, the predict.modeler() function tailors the predictions to the user’s needs, whether it’s estimating a single value, integrating across a range, or calculating a parameter-based expression.

8. Modelling all plots using parallel processing

Finally, we can apply this method to all 196 plots, leveraging parallel processing to speed up the computation. To do this, we specify parallel = TRUE in the options argument, and set the number of cores using the function parallel::detectCores(), which automatically detects the available cores.

mod <- dt_potato |>
  modeler(
    x = DAP,
    y = Canopy,
    grp = Plot,
    fn = "fn_linear_sat",
    parameters = c(t1 = 45, t2 = 80, k = 0.9),
    fixed_params = list(k = "max(y)"),
    options = list(progress = TRUE, parallel = TRUE, workers = 5)
  )