Generate model predictions from an object of class modeler
.
This function allows for flexible prediction types, including point predictions,
area under the curve (AUC), first or second order derivatives, and functions
of the parameters.
Arguments
- object
An object of class
modeler
, typically the result of calling themodeler()
function.- x
A numeric value or vector specifying the points at which predictions are made. For
type = "auc"
,x
must be a vector of length 2 that specifies the interval over which to calculate the AUC.- id
Optional unique identifier to filter predictions by a specific group. Default is
NULL
.- type
A character string specifying the type of prediction. Default is "point".
"point"
Predicts the value of
y
for the givenx
."auc"
Calculates the area under the curve (AUC) for the fitted model over the interval specified by
x
."fd"
Returns the first derivative (rate of change) of the model at the given
x
value(s)."sd"
Returns the second derivative of the model at the given
x
value(s).
- se_interval
A character string specifying the type of interval for standard error calculation. Options are
"confidence"
(default) or"prediction"
. Only works with "point" estimation.- n_points
An integer specifying the number of points used to approximate the area under the curve (AUC) when
type = "auc"
. Default is1000
.- formula
A formula specifying a function of the parameters to be estimated (e.g.,
~ b * 500
). Default isNULL
.- metadata
Logical. If
TRUE
, metadata is included with the predictions. Default isFALSE
.- ...
Additional parameters for future functionality.
Value
A data.frame
containing the predicted values,
their associated standard errors, and optionally the metadata.
Examples
library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_linear_sat",
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 2, 45)
)
print(mod_1)
#>
#> Call:
#> Canopy ~ fn_linear_sat(DAP, t1, t2, k)
#>
#> Sum of Squares Error:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.002601 0.459153 0.915706 2.206356 3.308233 5.700760
#>
#> Optimization Results `head()`:
#> uid t1 t2 k sse
#> 2 35.1 61.1 100.0 5.7008
#> 15 38.4 70.1 99.7 0.9157
#> 45 38.3 64.7 100.0 0.0026
#>
#> Metrics:
#> Groups Timing Convergence Iterations
#> 3 1.4387 secs 100% 349 (id)
#>
# Point Prediction
predict(mod_1, x = 45, type = "point", id = 2)
#> # A tibble: 1 × 4
#> uid x_new predicted.value std.error
#> <dbl> <dbl> <dbl> <dbl>
#> 1 2 45 38.0 0.618
# AUC Prediction
predict(mod_1, x = c(0, 108), type = "auc", id = 2)
#> # A tibble: 1 × 5
#> uid x_min x_max predicted.value std.error
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 0 108 5990. 33.7
# First Derivative
predict(mod_1, x = 45, type = "fd", id = 2)
#> # A tibble: 1 × 4
#> uid x_new predicted.value std.error
#> <dbl> <dbl> <dbl> <dbl>
#> 1 2 45 3.85 0.0738
# Second Derivative
predict(mod_1, x = 45, type = "sd", id = 2)
#> # A tibble: 1 × 4
#> uid x_new predicted.value std.error
#> <dbl> <dbl> <dbl> <dbl>
#> 1 2 45 0 0.0000240
# Function of the parameters
predict(mod_1, formula = ~ t2 - t1, id = 2)
#> # A tibble: 1 × 4
#> uid formula predicted.value std.error
#> <dbl> <chr> <dbl> <dbl>
#> 1 2 t2 - t1 26.0 0.522