Computes various performance metrics for a modeler object. The function calculates Sum of Squared Errors (SSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the Coefficient of Determination (R-squared).
Details
Sum of Squared Errors (SSE): $$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$Mean Absolute Error (MAE): $$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$Mean Squared Error (MSE): $$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$Root Mean Squared Error (RMSE): $$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$Coefficient of Determination (R-squared): $$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$
Examples
library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_linear_sat",
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(1:2)
)
plot(mod_1, id = c(1:2))
print(mod_1)
#>
#> Call:
#> Canopy ~ fn_linear_sat(DAP, t1, t2, k)
#>
#> Sum of Squares Error:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.4489 1.7619 3.0748 3.0748 4.3878 5.7008
#>
#> Optimization Results `head()`:
#> uid t1 t2 k sse
#> 1 38.5 61.7 99.8 0.449
#> 2 35.1 61.1 100.0 5.701
#>
#> Metrics:
#> Groups Timing Convergence Iterations
#> 2 0.9384 secs 100% 461.5 (id)
#>
metrics(mod_1)
#> # A tibble: 2 × 8
#> uid var SSE MAE MSE RMSE r_squared n
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 1 Canopy 0.449 0.0838 0.0561 0.237 1.00 8
#> 2 2 Canopy 5.70 0.475 0.713 0.844 1.00 8