Extract the variance-covariance matrix for the parameter estimates
from an object of class modeler
.
Usage
# S3 method for class 'modeler'
vcov(x, id = NULL, ...)
Arguments
- x
An object of class
modeler
, typically the result of calling themodeler()
function.- id
An optional unique identifier to filter by a specific group. Default is
NULL
.- ...
Additional parameters for future functionality.
Value
A list of matrices, where each matrix represents the variance-covariance matrix of the estimated parameters for each group or fit.
Examples
library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_linear_sat",
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 2, 45)
)
print(mod_1)
#>
#> Call:
#> Canopy ~ fn_linear_sat(DAP, t1, t2, k)
#>
#> Sum of Squares Error:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.002601 0.459153 0.915706 2.206356 3.308233 5.700760
#>
#> Optimization Results `head()`:
#> uid t1 t2 k sse
#> 2 35.1 61.1 100.0 5.7008
#> 15 38.4 70.1 99.7 0.9157
#> 45 38.3 64.7 100.0 0.0026
#>
#> Metrics:
#> Groups Timing Convergence Iterations
#> 3 1.5182 secs 100% 349 (id)
#>
vcov(mod_1)
#> $`2`
#> t1 t2 k
#> t1 5.934998e-02 -0.03183713 5.554242e-06
#> t2 -3.183713e-02 0.14965142 9.863943e-02
#> k 5.554242e-06 0.09863943 3.800529e-01
#>
#> $`15`
#> t1 t2 k
#> t1 3.082693e-02 -0.03338909 8.560489e-07
#> t2 -3.338909e-02 0.10016820 1.945368e-02
#> k 8.560489e-07 0.01945368 6.104608e-02
#>
#> $`45`
#> t1 t2 k
#> t1 6.081675e-05 -4.407386e-05 7.269796e-11
#> t2 -4.407386e-05 1.208133e-04 4.577090e-05
#> k 7.269796e-11 4.577090e-05 1.734000e-04
#>